(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
an__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
activate(n__f(X)) →+ f(activate(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__f(X)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
an__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X

S is empty.
Rewrite Strategy: FULL

(5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
g/0

(6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(f(a)) → f(g)
f(X) → n__f(X)
an__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X

S is empty.
Rewrite Strategy: FULL

(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(8) Obligation:

TRS:
Rules:
f(f(a)) → f(g)
f(X) → n__f(X)
an__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X

Types:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a

(9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f, activate

They will be analysed ascendingly in the following order:
f < activate

(10) Obligation:

TRS:
Rules:
f(f(a)) → f(g)
f(X) → n__f(X)
an__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X

Types:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a

Generator Equations:
gen_g:n__f:n__a2_0(0) ⇔ n__a
gen_g:n__f:n__a2_0(+(x, 1)) ⇔ n__f(gen_g:n__f:n__a2_0(x))

The following defined symbols remain to be analysed:
f, activate

They will be analysed ascendingly in the following order:
f < activate

(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol f.

(12) Obligation:

TRS:
Rules:
f(f(a)) → f(g)
f(X) → n__f(X)
an__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X

Types:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a

Generator Equations:
gen_g:n__f:n__a2_0(0) ⇔ n__a
gen_g:n__f:n__a2_0(+(x, 1)) ⇔ n__f(gen_g:n__f:n__a2_0(x))

The following defined symbols remain to be analysed:
activate

(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)

Induction Base:
activate(gen_g:n__f:n__a2_0(0)) →RΩ(1)
gen_g:n__f:n__a2_0(0)

Induction Step:
activate(gen_g:n__f:n__a2_0(+(n9_0, 1))) →RΩ(1)
f(activate(gen_g:n__f:n__a2_0(n9_0))) →IH
f(gen_g:n__f:n__a2_0(c10_0)) →RΩ(1)
n__f(gen_g:n__f:n__a2_0(n9_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(14) Complex Obligation (BEST)

(15) Obligation:

TRS:
Rules:
f(f(a)) → f(g)
f(X) → n__f(X)
an__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X

Types:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a

Lemmas:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)

Generator Equations:
gen_g:n__f:n__a2_0(0) ⇔ n__a
gen_g:n__f:n__a2_0(+(x, 1)) ⇔ n__f(gen_g:n__f:n__a2_0(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)

(17) BOUNDS(n^1, INF)

(18) Obligation:

TRS:
Rules:
f(f(a)) → f(g)
f(X) → n__f(X)
an__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X

Types:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a

Lemmas:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)

Generator Equations:
gen_g:n__f:n__a2_0(0) ⇔ n__a
gen_g:n__f:n__a2_0(+(x, 1)) ⇔ n__f(gen_g:n__f:n__a2_0(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)

(20) BOUNDS(n^1, INF)